Recently our hospital standardized a number of the adult vasopressor infusions. Our usual 10mg/250mL phenylephrine bags for infusion were eliminated and replaced by 20mg/250mL bags. Since phenylephrine is our primary vasopressor infusion for most anesthetics, our pharmacy drug trays include both a premixed bag of phenylephrine and a backup 10mg/1mL vial to mix into a 250mL saline bag if that initial bag is depleted. Pictured here is the backup concentrated phenylephrine 10mg/1mL vial in the drug tray:

For the transition to the more concentrated phenylephrine bags, the pharmacy now needed to supply 20 mg of concentrated phenylephrine in order to make backup phenylephrine bags. The two options were to include a larger phenylephrine vial (the next size up being 50mg/5mL) or adding an additional 10mg/1mL vial to the tray for a total of 2x 10mg/1mL vials. When the department was presented with the first option, many attendings were strongly against the 50mg vials since then worried that the less experienced residents may make a life threatening error with such a large, concentrated dose of phenylephrine. As for the second option, the pharmacy was against having 2 vials in the tray as there was no spot for the second vial and the pharmacists were worried about having a “free floating” vasopressor vial in the tray, especially an vial type which is shared by many other drugs. Replacing the blue tray foam inserts was not an immediate option as they had just been replaced a couple months prior and are prohibitively expensive to replace.
In order to expand the single phenylephrine vial spot into one big enough for 2 vials, I conceived of, designed, and 3D printed a quick and simple solution:

The cylindrical portion would slide easily into the vial spot and the rectangular portion would hold 2 horizontal vials. I printed the model in 2 parts to maximize speed and negate the need for 3D printed supports. The final part would be pressed together with a dab of glue. Between 3 Printers, I was able to complete the project overnight so that the pharmacy could implement the project immediately.




The pharmacy was satisfied with the solution and impressed with the speed at which the project was completed. This project, which used approximately $5 worth of materials, is an excellent example of how in-house 3D Design and Fused Deposition Modeling can be used to create immediate and useful solutions to problems that would otherwise require compromise or take months to implement.